GETTING OUR PICTURES TAKEN FOR THE LAB WEBSITE

whatshouldwecallgradschool:

credit: amanda

neurosciencestuff:

How the brain stabilizes its connections in order to learn better
Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, connections must be stabilized. A team at the University of Geneva (UNIGE) discovered a new cellular mechanism involved in the long-term stabilization of neuron connections, in which non-neuronal cells, called astrocytes, play a role unidentified until now. These results, published in Current Biology, will lead to a better understanding of neurodegenerative and neurodevelopmental diseases.
The central nervous system excitatory synapses – points of contact between neurons that allow them to transmit signals – are highly dynamic structures, which are continuously forming and dissolving. They are surrounded by non-neuronal cells, or glial cells, which include the distinctively star-shaped astrocytes. These cells form complex structures around synapses, and play a role in the transmission of cerebral information which was widely unknown before.
Plasticity and Stability
By increasing neuronal activity through whiskers stimulation of adult mice, the scientists were able to observe, in both the somatosensory cortex and the hippocampus, that this increased neuronal activity provokes an increase in astrocytes movements around synapses. The synapses, surrounded by astrocytes, re-organise their architecture, which protects them and increases their longevity. The team of researchers led by Dominique Muller, Professor in the Department of Fundamental Neuroscience of the Faculty of Medicine at UNIGE, developed new techniques that allowed them to specifically “control” the different synaptic structures, and to show that the phenomenon took place exclusively in the connections between neurons involved in learning. “In summary, the more the astrocytes surround the synapses, the longer the synapses last, thus allowing learning to leave a mark on memory,” explained Yann Bernardinelli, the lead author on this study.
This study identifies a new, two-way interaction between neurons and astrocytes, in which the learning process regulates the structural plasticity of astrocytes, who in turn determine the fate of the synapses. This mechanism indicates that astrocytes apparently play an important role in the processes of learning and memory, which present abnormally in various neurodegenerative and neurodevelopmental diseases, among which Alzheimer’s, autism, or Fragile X syndrome.
This discovery highlights the until now underestimated importance of cells which, despite being non-neuronal, participate in a crucial way in the cerebral mechanisms that allow us to learn and retain memories of what we have learned.

neurosciencestuff:

How the brain stabilizes its connections in order to learn better

Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, connections must be stabilized. A team at the University of Geneva (UNIGE) discovered a new cellular mechanism involved in the long-term stabilization of neuron connections, in which non-neuronal cells, called astrocytes, play a role unidentified until now. These results, published in Current Biology, will lead to a better understanding of neurodegenerative and neurodevelopmental diseases.

The central nervous system excitatory synapses – points of contact between neurons that allow them to transmit signals – are highly dynamic structures, which are continuously forming and dissolving. They are surrounded by non-neuronal cells, or glial cells, which include the distinctively star-shaped astrocytes. These cells form complex structures around synapses, and play a role in the transmission of cerebral information which was widely unknown before.

Plasticity and Stability

By increasing neuronal activity through whiskers stimulation of adult mice, the scientists were able to observe, in both the somatosensory cortex and the hippocampus, that this increased neuronal activity provokes an increase in astrocytes movements around synapses. The synapses, surrounded by astrocytes, re-organise their architecture, which protects them and increases their longevity. The team of researchers led by Dominique Muller, Professor in the Department of Fundamental Neuroscience of the Faculty of Medicine at UNIGE, developed new techniques that allowed them to specifically “control” the different synaptic structures, and to show that the phenomenon took place exclusively in the connections between neurons involved in learning. “In summary, the more the astrocytes surround the synapses, the longer the synapses last, thus allowing learning to leave a mark on memory,” explained Yann Bernardinelli, the lead author on this study.

This study identifies a new, two-way interaction between neurons and astrocytes, in which the learning process regulates the structural plasticity of astrocytes, who in turn determine the fate of the synapses. This mechanism indicates that astrocytes apparently play an important role in the processes of learning and memory, which present abnormally in various neurodegenerative and neurodevelopmental diseases, among which Alzheimer’s, autism, or Fragile X syndrome.

This discovery highlights the until now underestimated importance of cells which, despite being non-neuronal, participate in a crucial way in the cerebral mechanisms that allow us to learn and retain memories of what we have learned.

writingforyourlovee:

never would I want to be,

fragile for all eyes to see,

weary, wilted, as a child,

racing, pacing, on for miles.

shelter me, as forever ends,

 cherish me, until the very end.

(via mikefrawley)

"Aim above morality. Be not simply good, be good for something."

Henry David Thoreau (via beingblog)

(via acrylicalchemy)

art-and-fury:

Cliff Briggie
neurosciencestuff:

Measuring Nurture: Study Shows How “Good Mothering” Hardwires Infant Brain
By carefully watching nearly a hundred hours of video showing mother rats protecting, warming, and feeding their young pups, and then matching up what they saw to real-time electrical readings from the pups’ brains, researchers at NYU Langone Medical Center have found that the mother’s presence and social interactions — her nurturing role — directly molds the early neural activity and growth of her offsprings’ brain.
Reporting in the July 21 edition of the journal Current Biology, the NYU Langone team showed that the mother’s presence in the nest regulated and controlled electrical signaling in the infant pup’s brain.
Although scientists have known for decades that maternal-infant bonding affects neural development, the NYU Langone team’s latest findings are believed to be the first to show — as it is happening — how such natural, early maternal attachment behaviors, including nesting, nursing, and grooming of pups, impact key stages in postnatal brain development.
Researchers say the so-called slow-wave, neural signaling patterns seen during the initial phases of mammalian brain development — between age 12 and 20 days in rats — closely resembled the electrical patterns seen in humans for meditation and conscious and unconscious sleep-wake cycles, and during highly focused attention. These early stages are when permanent neural communication pathways are known to form in the infant brain, and when increasing numbers of nerve axons become sheathed, or myelinated, to speed neural signaling.
According to senior study investigator and neurobiologist Regina Sullivan, PhD, whose previous research in animals showed how maternal interactions influenced gene activity in the infant brain, the latest study offers an even more profound perspective on maternal caregiving.
“Our research shows how in mammals the mother’s sensory stimulation helps sculpt and mold the infant’s growing brain and helps define the role played by ‘nurturing’ in healthy brain development, and offers overall greater insight into what constitutes good mothering,” says Sullivan, a professor at the NYU School of Medicine and its affiliated Nathan S. Kline Institute for Psychiatric Research. “The study also helps explain how differences in the way mothers nurture their young could account, in part, for the wide variation in infant behavior among animals, including people, with similar backgrounds, or in uniform, tightly knit cultures.”
“There are so many factors that go into rearing children,” says lead study investigator Emma Sarro, PhD, a postdoctoral research fellow at NYU Langone. “Our findings will help scientists and clinicians better understand the whole-brain implications of quality interactions and bonding between mothers and infants so closely after birth, and how these biological attachment behaviors frame the brain’s hard wiring.”
For the study, a half-dozen rat mothers and their litters, of usually a dozen pups, were watched and videotaped from infancy for preset times during the day as they naturally developed. One pup from each litter was outfitted with a miniature wireless transmitter, invisibly placed under the skin and next to the brain to record its electrical patterns.
Specifically, study results showed that when rat mothers left their pups alone in the nest, infant cortical brain electrical activity, measured as local field potentials, jumped 50 percent to 100 percent, and brain wave patterns became more erratic, or desynchronous. Researchers point out that such periodic desynchronization is key to healthy brain growth and communication across different brain regions.
During nursing, infant rat pups calmed down after attaching themselves to their mother’s nipple. Brain activity also slowed and became more synchronous, with clearly identifiable electrical patterns.
Slow-wave infant brain activity increased by 30 percent, while readings of higher brain-wave frequencies decreased by 30 percent. Milk delivery led to intermittent bursts of electrical brain activity that were double or five times higher than before.
Similar spikes in rat brain activity of more than 100 percent were observed when mothers naturally groomed their infant pups.
However, these brain surges progressively declined during weaning, as infant pups gained independence from their mothers, leaving the nest and seeking food on their own as they grew past two weeks of age.
Additional experiments with a neural-signaling blocking agent, propranolol, confirmed that maternal effects were controlled in part by secretion of norepinephrine, a key neurotransmitter and hormone involved in most basic brain and body functions, including regulation of heart rate and cognition. Noradrenergic blocking in infant rats mostly dampened all previously observed effects induced by their mothers.
Sullivan says her team next plans similar experiments to look at how behavioral variations by the mother affect infant rat brain development, with the added goal of mapping any differences in brain development.
Long term, they say, they hope to develop diagnostic tools and therapies for people whose brains may have been impaired or simply underdeveloped during infancy.
Sarro says more research is also under way to investigate what other, nonadrenergic biological mechanisms might also be involved in controlling maternal sensory stimulation of the infant brain.

neurosciencestuff:

Measuring Nurture: Study Shows How “Good Mothering” Hardwires Infant Brain

By carefully watching nearly a hundred hours of video showing mother rats protecting, warming, and feeding their young pups, and then matching up what they saw to real-time electrical readings from the pups’ brains, researchers at NYU Langone Medical Center have found that the mother’s presence and social interactions — her nurturing role — directly molds the early neural activity and growth of her offsprings’ brain.

Reporting in the July 21 edition of the journal Current Biology, the NYU Langone team showed that the mother’s presence in the nest regulated and controlled electrical signaling in the infant pup’s brain.

Although scientists have known for decades that maternal-infant bonding affects neural development, the NYU Langone team’s latest findings are believed to be the first to show — as it is happening — how such natural, early maternal attachment behaviors, including nesting, nursing, and grooming of pups, impact key stages in postnatal brain development.

Researchers say the so-called slow-wave, neural signaling patterns seen during the initial phases of mammalian brain development — between age 12 and 20 days in rats — closely resembled the electrical patterns seen in humans for meditation and conscious and unconscious sleep-wake cycles, and during highly focused attention. These early stages are when permanent neural communication pathways are known to form in the infant brain, and when increasing numbers of nerve axons become sheathed, or myelinated, to speed neural signaling.

According to senior study investigator and neurobiologist Regina Sullivan, PhD, whose previous research in animals showed how maternal interactions influenced gene activity in the infant brain, the latest study offers an even more profound perspective on maternal caregiving.

“Our research shows how in mammals the mother’s sensory stimulation helps sculpt and mold the infant’s growing brain and helps define the role played by ‘nurturing’ in healthy brain development, and offers overall greater insight into what constitutes good mothering,” says Sullivan, a professor at the NYU School of Medicine and its affiliated Nathan S. Kline Institute for Psychiatric Research. “The study also helps explain how differences in the way mothers nurture their young could account, in part, for the wide variation in infant behavior among animals, including people, with similar backgrounds, or in uniform, tightly knit cultures.”

“There are so many factors that go into rearing children,” says lead study investigator Emma Sarro, PhD, a postdoctoral research fellow at NYU Langone. “Our findings will help scientists and clinicians better understand the whole-brain implications of quality interactions and bonding between mothers and infants so closely after birth, and how these biological attachment behaviors frame the brain’s hard wiring.”

For the study, a half-dozen rat mothers and their litters, of usually a dozen pups, were watched and videotaped from infancy for preset times during the day as they naturally developed. One pup from each litter was outfitted with a miniature wireless transmitter, invisibly placed under the skin and next to the brain to record its electrical patterns.

Specifically, study results showed that when rat mothers left their pups alone in the nest, infant cortical brain electrical activity, measured as local field potentials, jumped 50 percent to 100 percent, and brain wave patterns became more erratic, or desynchronous. Researchers point out that such periodic desynchronization is key to healthy brain growth and communication across different brain regions.

During nursing, infant rat pups calmed down after attaching themselves to their mother’s nipple. Brain activity also slowed and became more synchronous, with clearly identifiable electrical patterns.

Slow-wave infant brain activity increased by 30 percent, while readings of higher brain-wave frequencies decreased by 30 percent. Milk delivery led to intermittent bursts of electrical brain activity that were double or five times higher than before.

Similar spikes in rat brain activity of more than 100 percent were observed when mothers naturally groomed their infant pups.

However, these brain surges progressively declined during weaning, as infant pups gained independence from their mothers, leaving the nest and seeking food on their own as they grew past two weeks of age.

Additional experiments with a neural-signaling blocking agent, propranolol, confirmed that maternal effects were controlled in part by secretion of norepinephrine, a key neurotransmitter and hormone involved in most basic brain and body functions, including regulation of heart rate and cognition. Noradrenergic blocking in infant rats mostly dampened all previously observed effects induced by their mothers.

Sullivan says her team next plans similar experiments to look at how behavioral variations by the mother affect infant rat brain development, with the added goal of mapping any differences in brain development.

Long term, they say, they hope to develop diagnostic tools and therapies for people whose brains may have been impaired or simply underdeveloped during infancy.

Sarro says more research is also under way to investigate what other, nonadrenergic biological mechanisms might also be involved in controlling maternal sensory stimulation of the infant brain.

"Neuroscience is exciting. Understanding how thoughts work, how connections are made, how the memory works, how we process information, how information is stored - it’s all fascinating."

— Lisa Randall (via houseofmind)

saatchiart:

“When I make a picture, I make love.” –Alfred Stieglitz (Photograph he took of his wife, Georgia O’Keeffe)

saatchiart:

“When I make a picture, I make love.” –Alfred Stieglitz (Photograph he took of his wife, Georgia O’Keeffe)

neurosciencenews:

Working to Loosen the Grip of Severe Mental Illness
Read the full article Working to Loosen the Grip of Severe Mental Illness at NeuroscienceNews.com.
A neuroscientist at Rutgers University-Newark says the human brain operates much the same whether active or at rest – a finding that could provide a better understanding of schizophrenia, bipolar disorder and other serious mental health conditions that afflict an estimated 13.6 million Americans.
The research is in Neuron. (full access paywall)
Research: “Intrinsic and Task-Evoked Network Architectures of the Human Brain” by Michael W. Cole, Danielle S. Bassett, Jonathan D. Power, Todd S. Braver, and Steven E. Petersen in Neuron. doi:10.1016/j.neuron.2014.05.014
Image: The prefrontal cortex is a portion of the brain involved in high level thinking, as well as remembering what a person’s goal is and the task being performed. This image shows the location of the prefrontal cortex in the human brain. The image is for illustrative purposes only. Credit Database Center for Life Science.

neurosciencenews:

Working to Loosen the Grip of Severe Mental Illness

Read the full article Working to Loosen the Grip of Severe Mental Illness at NeuroscienceNews.com.

A neuroscientist at Rutgers University-Newark says the human brain operates much the same whether active or at rest – a finding that could provide a better understanding of schizophrenia, bipolar disorder and other serious mental health conditions that afflict an estimated 13.6 million Americans.

The research is in Neuron. (full access paywall)

Research: “Intrinsic and Task-Evoked Network Architectures of the Human Brain” by Michael W. Cole, Danielle S. Bassett, Jonathan D. Power, Todd S. Braver, and Steven E. Petersen in Neuron. doi:10.1016/j.neuron.2014.05.014

Image: The prefrontal cortex is a portion of the brain involved in high level thinking, as well as remembering what a person’s goal is and the task being performed. This image shows the location of the prefrontal cortex in the human brain. The image is for illustrative purposes only. Credit Database Center for Life Science.

sexmusic:

west coast // james vincent mcmorrow [lana del rey cover]

Download Lana del Rey's original via Amazon or itunes.

More from James Vincent McMorrow can also be downloaded via Amazon and iTunes.

"But I don’t want comfort. I want poetry. I want danger. I want freedom. I want goodness. I want sin."

— Aldous Huxley, Brave New World  (via thestylishgypsy)

(via imanopenbookinstead)

Boredom leads to #art #acrylic #painting #flowerfields #nofilter

Boredom leads to #art #acrylic #painting #flowerfields #nofilter

spaceplasma:

"The scientific man does not aim at an immediate result. He does not expect that his advanced ideas will be readily taken up. His work is like that of the planter — for the future. His duty is to lay the foundation for those who are to come, and point the way. He lives and labors and hopes."

Nikola Tesla 

(Source: teslauniverse.com, via mindblowingscience)